El diseño de amplificador diferencial le ayuda a analizar señales

R1 (KΩ) 
R2 (KΩ)
RC(Collector resistor) (KΩ) 
RE(Emitter resistor) (KΩ) 
VP(Supply Voltage) (V)
Beta (DC Current Gain)
VBE (Base to emitter drop) (V)
Rs(Source Resistance) (Ω)
RL(Load resistor) (Ω) 
fT(Current Gain BW Product) (MHz)
CCB(Cu Collector-Base Cap.) (pF)
CBE(Cπ, Base-Emitter Cap.) (pF)

VC(Collector Voltage) (V) 
VE(Emitter Voltage) (V) 
VB (Base Voltage) (V) 
IE(Emitter Voltage) (mA) 
IC(Collector Voltage) (mA) 
IB (Base Voltage) (mA) 
gm (Transconductance)
rπ (Input Resistance of BJT at low freq) (Ω)
re  (Ω)
RIN (Input Resistance of Amp) (KΩ)
A (Amplifier Voltage Gain)
fP1 (MHz)
fP2 (MHz)

VB=  VP*R2/(R1+R2)

VE= VB-VBE

IE=VE/RE

Alpha= Beta/(Beta+1);

IC= Alpha*IE

VC= VP -  IC*RC/2

IB=IC/Beta

 

gm = Ic/25mA

re= Alpha/gm

rπ= Beta/gm

A=Alpha* rπ*RC/(Rs+2*rπ)/re

fP1=1/(2*π*(Rs||2*rπ)*(CBE/2+CBC))

fP2=1/(2*π*RC*CBC)

 

fT= gm/(2π*(CBE+CBC))

The lower pole is dominate: 

 

.

función           Geometría sólida          geometria plana